

Technological and Higher Education Institute of Hong Kong 香港高等教育科技學院

Investigation of Forward Osmosis Process for Wastewater Treatment and Water Reuse

Miss WONG Ching Hei, BEng (Hons) in Environmental Engineering and Management, Faculty of Science and Technology

Supervisor: Dr CHAN Cho Yin Joe, Assistant Professor

Introduction

- Rising water demand due to population growth, industrialization, and urbanization.
- Declining freshwater resources and water quality from pollution.
- Need for sustainable, affordable wastewater treatment, and water reuse techniques.

Findings (cont'd)

Effect on water flux

•Optimal performance requires balance between water flow, osmotic pressure, and FO

	32	5 <u>7</u>		
♠			$\langle \rangle$	
L				
L		Flux Reversal		Reverse
L		point		> Osmosis
		$(\Delta D - \Delta \pi)$		$(\Delta P > \Delta \pi)$

- Forward osmosis a potential method with:
 - Low energy usage
 - Excellent pollutant rejection
 - High-quality water production for various uses
- Investigate performance and viability under different operating conditions.
- Current challenges in technology deployment for wastewater treatment and water reuse.

process effectiveness
(McCutcheon et al., 2006).
•Mitigate issues with increased
water flow:

- Right operating conditions.
- Membrane characteristics.
- Fouling reduction

techniques:

- Pretreatment.
- Membrane surface modification (Zhao et al., 2012)

Figure 2: The relationship between water flux and pressure in FO, PRO and RO (Sources: Cath et.al, 2006).

Member of **V***TC* Group

Effect on Cross-flow velocity

•Cross-flow velocity impacts concentration polarization, fouling, and water flux in FO processes (Cath et al., 2006).

•Higher velocities:

- Increase flow
- Decrease polarization and fouling (Xie et al., 2013; Lay et al., 2010)

Objectives

- Goal: Effectively remove challenging organic trace contaminants (phenol, aniline, nitrobenzene) for wastewater reuse.
- Examine forward osmosis (FO) as a promising wastewater treatment and water reuse technology.
- Study objectives:
 - Compare FO efficiency and efficacy to reverse osmosis (RO).
 - Investigate impacts of various variables on FO process.

Q The study will specifically look at the effects of:

- 1. Water flux
- >>> 2. Cross-flow velocity
- **3.** Temperature
- 4. pH of the draw solution

Methodology

Conduct thorough analysis of academic literature:

- Use more energy
- •Ideal velocity balances performance and energy costs (Cath et al., 2006; McCutcheon et al.).

Effect on Temperature

- Temperature affects osmotic pressure, viscosity, solute solubility, and recovery effectiveness.
- •Optimal draw solution should:
 - Reduce concentration polarization (McCutcheon et al., 2006; Xie et al., 2012)
 - Minimize fouling (Shaffer et al., 2015)
 - Enable efficient draw solute recovery under specific temperature conditions (Chekli et al., 2016)

Effect on pH of the draw solution

- Draw solution pH influences: Solute rejection.
 Water flow.
- •Pollutant rejection.
- •Chemical stability, membrane charge, solute-membrane interactions (Mi et al., 2010; Lutchmiah et al., 2012; Wu et al., 2012)

Study examines forward osmosis for wastewater treatment and water reuse

- Academic repositories
- Internet resources
- Conference
 proceedings

Findings

Draw Solution Selection

- a) High osmotic pressure drive the water flow.
- b) Be rapidly and effectively separated from the diluted draw solution to allow for the recovery and repurposing of the draw solution.
- c) Be safe for the environment and non-toxic.
- d) Be able to withstand membrane scaling and fouling.

Conclusion and Future work

- •FO potential for sustainable water management due to:
 - Enhanced pollutant rejection
 - Decreased energy consumption
 - Reduced fouling
- Important variables: water flux, temperature, pH.
 Future research focus to address global water scarcity and sustainable water resource management:
 Integration with existing treatment technologies
 - Innovative draw solutes
 - Advanced membranes
 - Fouling resistance